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Abstract

Human pose estimation from monocular images exhibits

an inherent uncertainty through self-occlusions and inter-

person occlusions, aside from typical sources of uncer-

tainty. Recently, there has been an increased focus in mod-

elling uncertainty in supervised machine learning tasks. In

line with this trend, we propose a novel formulation to cap-

ture aleatoric uncertainty in human pose using a multi-

variate Gaussian distribution over all the joints of human

body and show that this improves generalization in 2D hu-

man pose estimation by implicitly suppressing the gradi-

ents from uncertain joints. Further, we develop a novel

method to triangulate 3D human pose from predicted 2D

poses, under the predicted uncertainty, that out-performs

the baselines by over 10.8% and provide a multi-view infer-

ence benchmark for 3D human pose estimation on Human

3.6M dataset.

1. Introduction

Human pose estimation has evolved over the recent years

by virtue of complex CNNs [9, 10] and availability of large

scale datasets [6, 1]. However, monocular images of hu-

mans are prone to occlusions from the self, another person

or objects. In all these cases, the corresponding posterior

for human pose, conditioned on the image, is inherently

stochastic in nature. So it is imperative for the neural net-

work to return a distribution on the expected joint locations

as opposed to confidently localizing to unique locations. In

Figure 1, we demonstrate few such cases where predicting

to one specific location is not appropriate.

Uncertainty in neural network predictions are typically

either epistemic or aleatoric in nature [2, 7, 3], where the

former captures the uncertainty from the model while the

latter captures uncertainty of the input data. The kind of

uncertainty we wish to capture is aleatoric and cannot be

reduced by collecting more data as opposed to epistemic

uncertainty. Since the human pose is anthropomorphically

constrained, we consider the joint locations as correlated

stochastic variables and propose to predict a multi-variate
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Figure 1: (a) Images with increasing levels of predicted uncer-

tainty on Right Knee joint on MPII validation set (best viewed

when zoomed in). Red circles are visual aids while the white re-

gion represents actual Gaussian field. Images towards the right

have severe occlusions and consequently, our network assigns

higher uncertainty. (b) Network architecture

Gaussian distribution over the joint locations. To the best of

our knowledge, this is the first work that explicitly captures

uncertainty in human pose estimation.

In Section 2, we detail our problem formulation. Un-

like [2], we are able to accomplish end-to-end training to

jointly predict a full rank covariance matrix along with the

expected joint locations. In Section 3, we empirically and

qualitatively verify the significance of the predicted uncer-

tainty on MPII dataset [1]. Our joint prediction scheme also

helps in generalization i.e. our model outperforms the base-

line without uncertainty by a significant margin. The intu-

ition is that network learns to reduce the the contribution

from occluded/noisy joints’ locations by increasing their

corresponding uncertainty when computing the loss. Sec-

tion 4 provides the implementation details.
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In Section 5, we propose to exploit the predicted un-

certainties to weigh the residuals while triangulating 3D

pose from predicted 2D locations in multi-view images. We

demonstrate an out-standing improvement of over 10.8%
over the baseline method through this simple improvisation

on the Human 3.6M dataset [6] and provide a strong bench-

mark for multi-view 3D pose estimation.

2. Problem Formulation

We model joint locations as a multivariate Gaussian ran-

dom variable y ∈ Y , Y ⊂ Rn×k conditioned over image

x ∈ X , X ⊂ Rh×w×3 where n is total number of joints, k

is 2, 3 for 2D and 3D respectively, w is image width and h

is image height. The posterior probability of y conditioned

on x is given by Eq. 1

p(y|x) = N(µ(x),Σ(x)) (1)

Given an Image x ∈ X , a neural network with parame-

ters w can be used to estimate µ̂w(x) and Σ̂w(x). A neg-

ative logarithm of maximum likelihood (shown in Eq. 2) is

minimized with respect to w to train this network.

L = argmin
w

log(|Σ̂w(x)|)

+ (y − µ̂w(x))
T (Σ̂w(x))

−1(y − µ̂w(x))

(2)

If Σ̂w(x) is directly estimated using a neural network,

it needs to be inverted which could result in numerical in-

stability. Hence, it is more practical to estimate Ψ̂w(x) =
Σ̂w(x)

−1 called Precision matrix. The Precision matrix is

symmetric and positive definite with (s2 − s)/2 + s unique

parameters where s = n × k. Hence, we represent Pre-

cision matrix with it’s Cholesky decomposition (shown in

Eq. 3) and restrict diagonals terms to be positive to ensure

a unique decomposition and positive definiteness for Preci-

sion matrix.

Ψ̂w(x) = L̂w(x)L̂w(x)
T (3)

where L is a lower triangular matrix. To ensure pos-

itive diagonal terms in L, our networks outputs liw =
−log(L̂w(x)ii). The modified loss function is given in Eq. 4

L = argmin
w

2 ∗

s∑

n=1

liw

+ ||(y − µ̂w(x))
T (L̂w(x))||

2

(4)

3. 2D Human Pose Estimation

In this section, we use the uncertainty formulation from

Section 2. to model the uncertainty in 2D human pose esti-

mation task under two settings i) Diagonal Covariance Ma-

trix, herewith called diagonal iii) Full Convariance Matrix,

herewith called full.

3.1. Significance Of Uncertainty

To understand the significance of the predicted uncer-

tainty, we sort the images using i) Entropy log(|Σ̂w(x)|), ii)

Variance on right knee iii) Variance on left elbow. We ob-

served that the images with highest predicted uncertainties

in each of the cases have heavy occlusions or have multi-

ple people cluttered together in the image. Images with low

predicted uncertainty have the corresponding joints clearly

visible. Qualitative results are presented in Figure 1. Ta-

ble. 1 shows the PCKh for top and bottom K images sorted

based on uncertainty.

Joint Type Top K PCKh Bot. K PCKh

K=1 50 500 K=1 50 500

All joints 0.1 0.13 0.16 1.0 1.0 0.99

R.Knee 0.0 0.22 0.49 1.0 1.0 0.99

L.Elbow 0.0 0.38 0.55 1.0 1.0 0.99

Table 1: PCKh values of the top K and bottom K images from

MPII validation set sorted in descending order of uncertainty.

To isolate the effect of occlusion on uncertainty, we add

synthetic occlusions by placing black square patches of in-

creasing size on the left elbow joint. The corresponding

results are presented in Fig . 2 and Table. 2. We can observe

a clear increase in uncertainty with occlusion size. Further,

we can observe uncertainty propagation through the covari-

ance terms, with marked increase in adjacent joints. This is

in line with the anthropometric constraints.

Occlusion Avg. L.El. Standard Deviation

diagonal (in px) full (in px)

0px 9.99 8.96

10px × 10px 10.69 9.91

20px × 20px 11.93 11.3

30px × 30px 13.36 13.06

40px × 40px 14.79 14.43

Table 2: Average standard deviation due to synthetic occlusion of

Left Elbow on MPII validation set. We observe an increasing trend

for both the trained models with increase in occlusion

4. Network Architecture and Training

We use a ResNet-50 [5] backend with three heads respec-

tively for expectation (µ̂w), diagonal (liw) and off-diagonal

(L̂w) terms. The backend and expectation head is exactly

same as used in [10]. We use additional average pooling

heads for diagonal and off-diagonal predictions, and further

two hidden layers of size 2048 with ReLU activations, batch

normalization and dropout for the off-diagonal predictions.

Schematic diagram is presented in Figure 1. Training pro-

cedure is divided into three stages - In first stage, we train
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Figure 2: Comparison of average of absolute covariance over MPII

dataset with increasing occlusion on left elbow. We observe that

absolute covariance increases for left wrist but remains flat for

right wrist implying propagation of uncertainity between directly

connected joints

using only L1 loss on expectation branch, followed by joint

training of expectation and diagonal branches by assuming

a diagonal covariance matrix. Finally, we train for all three

branches using loss from Eq. 4. We use the Adam optimizer

[8] with an initial learning rate of 1e-3 and an L2 weight

regularization of 1e-5.

4.1. Generalization

Starting from the architecture in [10] trained using an

L1 Loss, we observed that the generalization improves after

adding an uncertainty based loss as defined in Eq. 4. Ta-

ble. 3 demonstrates this observation on MPII validation set,

as is the common practice for ablation studies [10, 9].

Method PCKh@0.5 PCKh@0.1

Sun[10] - Direct 84.6 25

Diagonal 85.6 27.65

Full 86.2 28.4

Table 3: Comparing PCKh of diagonal covariance and full covari-

ance to baseline on MPII validation set. Direct refers to direct

regression. Note that our objective is not to compare against state-

of-the-art, but to show the improved generalization achieved by

learning to predict uncertainty.

5. Triangulating 3D pose

In this section, we utilize our learned uncertainty mea-

sure to improve accuracy of triangulating 3D joint positions

from their 2D predictions in multi-view images [4]. Noisy

2D predictions are geometrically inconsistent and reduce

the triangulation accuracy. To this end, we compute con-

fidence of prediction of every 2D joint position from the

modelled uncertainty and assign weights to its correspond-

ing least square residuals according to the computed con-

fidence. A higher weight is assigned to a joint when its

uncertainty is lower. This is in coherence with our obser-

vations in Section 3.1, where larger values uncertainty are

captured when joints are incorrectly predicted or occluded.

In Eq. 5, we present our modified triangulation objective

to obtain the optimum 3d position of the ith joint pi
∗

with

i = 1 . . . N with N as the no. joints in the human pose. Let

j = 1 . . .M with M as the number of views.

pi
∗

= argmin
pi

M∑

j=1

W ij ∗ ‖xij − πj(pi)‖
2

W ij = (1/e2l
ij

) / max
k

(1/e2l
ik

)

(5)

where xij is the predicted 2D location for ith joint in jth

view, W ij is the corresponding weight applied to its resid-

ual and lij = −log(L̂j
ii) is the predicted diagonal term. The

projection from 3D to 2D using camera intrinsic and extrin-

sic parameters in the jth view is denoted by function πj .

We justify our claims by performing 3D triangulation on

the popular Human3.6M [6] dataset with (M = 3, 4) views

and (N = 16) joints per skeleton. Corresponding results

are presented in Table . 4. For 2D joints locations and its

uncertainty, we use the the predictions of the pre-trained

model used in Section 4 fined tuned on Human3.6M. We

observe a highest gain of 10.8% when using 4 views.

Method MPJPE(mm)

3 views 4 views

without-weights 40.50 36.80

with-weights 39.20 32.72

Table 4: Comparison of triangulated skeleton obtained by our

modified formulation (‘with’) against the vanilla formulation

(‘without’). We perform two experiments, triangulating from all

the 4 views and taking a subsets of 3 views and report MPJPE val-

ues. It is evident that weighing the prediction based on confidence

improves the triangulation performance.

6. Conclusion

In this paper we model joints locations using a multivari-

ate Gaussian to capture aleatoric uncertainty in human pose

estimation. We improve upon the existing 2D human pose

estimation baselines by obtaining a better fit to the data on

MPII dataset. Further, we show our predicted uncertainty

improves 3D pose triangulation from multi-view images by

suppressing contributions of occluded or noisy residuals.

In future, we plan to extend this framework to different

state-of-the-art human pose architectures and use the pre-

dicted uncertainty in motion tracking and future frame pre-

diction problems.
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